Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

DIV(plus(x, y), z) → PLUS(div(x, z), div(y, z))
DIV(s(x), s(y)) → MINUS(x, y)
MINUS(s(x), s(y)) → P(s(x))
MINUS(s(x), s(y)) → P(s(y))
MINUS(x, plus(y, z)) → MINUS(minus(x, y), z)
PLUS(s(x), y) → PLUS(y, minus(s(x), s(0)))
MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y)))
P(s(s(x))) → P(s(x))
DIV(s(x), s(y)) → DIV(minus(x, y), s(y))
MINUS(x, plus(y, z)) → MINUS(x, y)
PLUS(s(x), y) → MINUS(s(x), s(0))
DIV(plus(x, y), z) → DIV(x, z)
DIV(plus(x, y), z) → DIV(y, z)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

DIV(plus(x, y), z) → PLUS(div(x, z), div(y, z))
DIV(s(x), s(y)) → MINUS(x, y)
MINUS(s(x), s(y)) → P(s(x))
MINUS(s(x), s(y)) → P(s(y))
MINUS(x, plus(y, z)) → MINUS(minus(x, y), z)
PLUS(s(x), y) → PLUS(y, minus(s(x), s(0)))
MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y)))
P(s(s(x))) → P(s(x))
DIV(s(x), s(y)) → DIV(minus(x, y), s(y))
MINUS(x, plus(y, z)) → MINUS(x, y)
PLUS(s(x), y) → MINUS(s(x), s(0))
DIV(plus(x, y), z) → DIV(x, z)
DIV(plus(x, y), z) → DIV(y, z)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DIV(plus(x, y), z) → PLUS(div(x, z), div(y, z))
DIV(s(x), s(y)) → MINUS(x, y)
MINUS(s(x), s(y)) → P(s(y))
MINUS(s(x), s(y)) → P(s(x))
MINUS(x, plus(y, z)) → MINUS(minus(x, y), z)
PLUS(s(x), y) → PLUS(y, minus(s(x), s(0)))
MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y)))
DIV(s(x), s(y)) → DIV(minus(x, y), s(y))
P(s(s(x))) → P(s(x))
PLUS(s(x), y) → MINUS(s(x), s(0))
MINUS(x, plus(y, z)) → MINUS(x, y)
DIV(plus(x, y), z) → DIV(x, z)
DIV(plus(x, y), z) → DIV(y, z)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 4 SCCs with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

P(s(s(x))) → P(s(x))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


P(s(s(x))) → P(s(x))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
P(x1)  =  x1
s(x1)  =  s(x1)

Recursive path order with status [2].
Precedence:
trivial

Status:
s1: multiset

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y)))
MINUS(x, plus(y, z)) → MINUS(x, y)
MINUS(x, plus(y, z)) → MINUS(minus(x, y), z)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MINUS(x, plus(y, z)) → MINUS(x, y)
MINUS(x, plus(y, z)) → MINUS(minus(x, y), z)
The remaining pairs can at least be oriented weakly.

MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y)))
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x1, x2)
s(x1)  =  s
p(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
minus(x1, x2)  =  x1
0  =  0

Recursive path order with status [2].
Precedence:
plus2 > MINUS2

Status:
plus2: multiset
0: multiset
s: multiset
MINUS2: [1,2]

The following usable rules [14] were oriented:

minus(x, plus(y, z)) → minus(minus(x, y), z)
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(0, y) → 0
p(s(s(x))) → s(p(s(x)))
minus(x, 0) → x



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y)))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(y, minus(s(x), s(0)))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x), s(y)) → DIV(minus(x, y), s(y))
DIV(plus(x, y), z) → DIV(x, z)
DIV(plus(x, y), z) → DIV(y, z)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DIV(plus(x, y), z) → DIV(x, z)
DIV(plus(x, y), z) → DIV(y, z)
The remaining pairs can at least be oriented weakly.

DIV(s(x), s(y)) → DIV(minus(x, y), s(y))
Used ordering: Combined order from the following AFS and order.
DIV(x1, x2)  =  DIV(x1, x2)
s(x1)  =  x1
minus(x1, x2)  =  x1
plus(x1, x2)  =  plus(x1, x2)
p(x1)  =  p
0  =  0

Recursive path order with status [2].
Precedence:
DIV2 > p
plus2 > p
0 > p

Status:
plus2: multiset
0: multiset
DIV2: [2,1]
p: []

The following usable rules [14] were oriented:

minus(x, plus(y, z)) → minus(minus(x, y), z)
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(0, y) → 0
p(s(s(x))) → s(p(s(x)))
minus(x, 0) → x



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x), s(y)) → DIV(minus(x, y), s(y))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DIV(s(x), s(y)) → DIV(minus(x, y), s(y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
DIV(x1, x2)  =  DIV(x1, x2)
s(x1)  =  s(x1)
minus(x1, x2)  =  x1
plus(x1, x2)  =  plus
p(x1)  =  x1
0  =  0

Recursive path order with status [2].
Precedence:
DIV2 > s1

Status:
plus: multiset
0: multiset
s1: multiset
DIV2: multiset

The following usable rules [14] were oriented:

minus(x, plus(y, z)) → minus(minus(x, y), z)
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(0, y) → 0
p(s(s(x))) → s(p(s(x)))
minus(x, 0) → x



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.